анна билык
Методика формирования у детей дошкольного возраста представлений о геометрических фигурах и форме предметов
▼ Скачать + Заказать документы
Кто с детских лет занимается математикой, тот развивает внимание, тренирует свой мозг, свою волю, воспитывает настойчивость и упорство в достижении цели.
А. Маркушевич
Одной из наиболее важных задач подготовки детей к школе является формирование у них элементарных математических представлений, навыков и умений. Умение правильно определять величину, форму, пространственное положение предметов – одна из составляющих частей фундамента математического развития дошкольника. Освоение детьми основного образовательного содержания курса «Геометрические фигуры и тела» осуществляется в повседневной жизни, путем естественного для дошкольника вида деятельности – в игре. Знакомство с величиной, формой, пространственными ориентирами начинается у ребенка очень рано, уже с младенческого возраста. Он на каждом шагу сталкивается с тем, что нужно учитывать величину и форму предметов, правильно ориентироваться в пространстве.
Публикация «Методика формирования у детей дошкольного возраста представлений о геометрических фигурах и форме предметов» размещена в разделах
Методика формирования представлений о геометрических фигурах и форме предметов у дошкольников
Для реализации программных задач в качестве дидактического материала для детей 3-4 лет в группе используются модели простейших плоских геометрических фигур (круг, квадрат) разного цвета и размера.
Еще до проведения систематических занятий педагог организует игры детей со строительным материалом, наборами геометрических фигур, геометрической мозаикой. В этот период важно обогатить восприятие детей, накопить у них представления о разнообразных геометрических фигурах, дать их правильное название. На занятиях детей учат различать и правильно называть геометрические фигуры круг и квадрат. Каждая фигура познается в сравнении с другой.
На первом занятии первостепенная роль отводится обучению детей приемам обследования фигур осязательно-двигательным путем под контролем зрения и усвоению их названий.
Воспитатель показывает фигуру, называет ее, просит детей взять в руки такую же. Затем педагог организует действия детей с данными фигурами : прокатить круг, поставить, положить квадрат, проверить, будет ли он катиться. Аналогичные действия дети выполняют с фигурами другого цвета и размера.
В заключение проводятся два-три упражнения на распознавание и обозначение словами фигур («Что я держу в правой руке, а что в левой?»; «Дай мишке круг, а петрушке квадрат»; «На верхнюю полоску положите один квадрат, а на нижнюю много кругов» и т. п.).
На последующих занятиях организуется система упражнений с целью закрепления у детей умений различать и правильно называть геометрические фигуры :
У детей пятого года жизни нужно, прежде всего, закрепить умение различать и правильно называть круг и квадрат, а затем и треугольник. С этой целью проводятся игровые упражнения, в которых дети группируют фигуры разного цвета и размера. Меняется цвет, размер, а признаки формы остаются неизменными. Это способствует формированию обобщенных знаний о фигурах.
Чтобы уточнить представления детей о том, что геометрические фигуры бывают разного размера, им показывают (на таблице, фланелеграфе или наборном полотне) известные геометрические фигуры. К каждой из них дети подбирают аналогичную фигуру, как большего, так и меньшего размера. Сравнив величину фигур (визуально или приемом наложения, дети устанавливают, что фигуры одинаковы по форме, но различны по размеру. В следующем упражнении дети раскладывают по три фигуры разного размера в возрастающем или убывающем порядке.
На следующем занятии дети получают уже неодинаковые наборы фигур. Они, разбирая свои комплекты, сообщают, у кого какие фигуры и сколько их. При этом целесообразно упражнять детей и в сравнении количества фигур : «Каких фигур у тебя больше, а каких меньше? Поровну ли у вас квадратов и треугольников?» и т. п. В зависимости от того, как скомплектованы геометрические фигуры в индивидуальных конвертах, между их количеством может быть установлено равенство или неравенство.
Выполняя это задание, ребенок сравнивает количество фигур, устанавливая между ними взаимно однозначное соответствие. Приемы при этом могут быть разные: фигуры в каждой группе располагаются рядами, точно одна под другой, или располагаются парами, или накладываются друг на друга. Так или иначе, устанавливается соответствие между элементами фигур двух групп и на этой основе определяется их равенство или неравенство.
С новыми геометрическими фигурами детей знакомят путем сравнения с уже известными:
прямоугольник с квадратом,
шар с кругом, а затем с кубом,
куб с квадратом, а затем с шаром,
цилиндр с прямоугольником и кругом, а затем с шаром и кубом.
Как уже отмечалось, основной задачей обучения детей 5-6 лет является формирование системы знаний о геометрических фигурах. Детям даются известные им фигуры, и предлагают руками обследовать границы квадрата и круга, прямоугольника и овала и подумать, чем эти фигуры отличаются друг от друга и что в них одинаковое. Они устанавливают, что у квадрата и прямоугольника есть «уголки», а у круга и овала их нет. Воспитатель, обводя фигуру пальцем, объясняет и показывает на прямоугольнике и квадрате углы, вершины, стороны фигуры. Вершина - это та точка, в которой соединяются стороны фигуры. Стороны и вершины образуют границу фигуры, а граница вместе с ее внутренней областью - саму фигуру.
На разных фигурах дети показывают ее внутреннюю область и ее границу - стороны, вершины и углы как часть внутренней области фигуры.
Угол (плоский) - геометрическая фигура, образованная двумя лучами (сторонами, выходящими из одной точки (вершины).
Можно предложить детям заштриховать красным карандашом внутреннюю область фигуры, а синим карандашом обвести ее границу, стороны. Дети не только показывают отдельные элементы фигуры, но и считают вершины, стороны, углы у разных фигур. Сравнивая квадрат с кругом, они выясняют, что у круга нет вершин и углов, есть лишь граница круга – окружность.
Программой воспитания и обучения в ДОУ предусматривается познакомить старших дошкольников с четырехугольниками. Для этого детям показывают множество фигур с четырьмя углами и предлагают самостоятельно придумать название данной группе.
Предложения детей «четырехсторонние», «четырехугольные» нужно одобрить и уточнить, что эти фигуры называются четырехугольниками. Такой путь знакомства детей с четырехугольником способствует формированию обобщения. Можно использовать следующие варианты упражнений на группировку четырехугольников:
отобрать все красные четырехугольники, назвать фигуры данной группы;
отобрать четырехугольники с равными сторонами, назвать их;
отобрать все большие четырехугольники, назвать их форму, цвет;
слева от карточки положить все четырехугольники, а справа не четырехугольники; назвать их форму, цвет, величину.
Полезно применять и такой прием: детям раздаются карточки с контурным изображением фигур разного размера, и формулируется задание подобрать соответствующие фигуры по форме и размеру и наложить их на контурное изображение. Равными фигурами будут те, у которых все точки совпадут по контуру.
Важной задачей является обучение детей сравнению формы предметов с геометрическими фигурами как эталонами предметной формы. Работа по сопоставлению формы предметов с геометрическими эталонами проходит в два этапа.
На первом этапе нужно научить детей на основе непосредственного сопоставления предметов с геометрической фигурой давать словесное определение формы предметов.
Таким образом, удается отделить модели геометрических фигур от реальных предметов и придать им значение образцов. Для игр и упражнений подбираются предметы с четко выраженной основной формой без каких-либо деталей (блюдце, обруч, тарелка - круглые; платок, лист бумаги, коробка - квадратные и т. п.). На последующих занятиях могут быть использованы картинки, изображающие предметы определенной формы. Занятия следует проводить в форме дидактических игр или игровых упражнений: «Подбери по форме», «На что похоже?», «Найди предмет такой же формы», «Магазин» и т. п. Далее выбирают предметы указанной формы (из 4-5 штук, группируют их и обобщают по единому признаку формы (все круглые, все квадратные и т. д.)
На втором этапе детей учат определять не только основную форму предметов, но и форму деталей (домик, машина, снеговик, петрушка и т. д.). Игровые упражнения проводят с целью обучения детей зрительно расчленять предметы на части определенной формы и воссоздавать предмет из частей. Такие упражнения с разрезными картинками, кубиками, мозаикой лучше проводить вне занятия.
Следующая задача - научить детей составлять плоские геометрические фигуры путем преобразования разных фигур. Например, из двух треугольников сложить квадрат, а из других треугольников - прямоугольник. Затем из двух-трех квадратов, сгибая их разными способами, получать новые фигуры (треугольники, прямоугольники, маленькие квадраты).
Очень важно упражнять детей в комбинировании геометрических фигур, в составлении разных композиций из одних и тех же фигур. Это приучает их всматриваться в форму различных частей любого предмета, читать технический рисунок при конструировании. Из геометрических фигур могут составляться изображения предметов.
Одна из задач старшей группы - познакомить детей с многоугольником, его признаками: вершины, стороны, углы. Решение этой задачи позволит подвести детей к обобщению : все фигуры, имеющие по три и более угла, вершины, стороны, относятся к группе многоугольников.
Детям показывают модель круга и новую фигуру - пятиугольник. Предлагают сравнить их и выяснить, чем отличаются эти фигуры. Фигура справа отличается от круга тем, что имеет углы, много углов. Детям предлагается прокатить круг и попытаться прокатить многоугольник. Он не катится по столу. Этому мешают углы. Считают углы, стороны, вершины и устанавливают, почему эта фигура называется многоугольником. Для уточнения знаний о многоугольнике могут быть даны задания по зарисовке фигур на бумаге в клетку. Затем можно показать разные способы преобразования фигур : обрезать или отогнуть углы у квадрата и получится восьмиугольник. Накладывая два квадрата друг на друга, можно получить восьмиконечную звезду.
Согласно программе в старшей группе следует продолжать формировать у детей преобразованию фигур.
Эта работа способствует:
-познанию фигур и их признаков
развивает конструктивное и геометрическое мышление.
Приемы этой работы многообразны:
одни из них направлены на знакомство с новыми фигурами при их делении на части,
другие - на создание новых фигур при их объединении.
Детям предлагают сложить квадрат пополам двумя способами: совмещая противолежащие стороны или противолежащие углы - и сказать, какие фигуры получились после сгибаний (два прямоугольника или два треугольника).
Можно предложить узнать, какие получились фигуры, когда прямоугольник разделили на части, и сколько теперь всего фигур (один прямоугольник, а в нем три треугольника). Особый интерес для детей представляют занимательные упражнения на преобразование фигур.
Таким образом, для развития у ребенка представлений формы надо освоить ряд практических действий, которые помогают ему воспринимать форму независимо от положения фигуры в пространстве, от цвета и величины. Это такие практические действия, как: наложение фигур, прикладывание, переворачивание, сопоставление элементов фигур, обведение пальцем контура, ощупывание, рисование. После освоения практических действий ребенок может узнать любую фигуру, выполняя эти же действия в уме.
Использование задач-головоломок в развитии у детей дошкольного возраста представлений о форме предмета и геометрических фигурах
Любая математическая задача на смекалку, для какого бы возраста она ни предназначалась, несет в себе определенную умственную нагрузку, которая чаще всего замаскирована занимательным сюжетом, внешними данными, условием задачи и т. д.
Занимательность математическому материалу придают игровые элементы, содержащиеся в каждой задаче, логическом упражнении, развлечении, будь то шахматы или самая элементарная головоломка. Например, в вопросе: "Как с помощью двух палочек сложить на столе квадрат?" - необычность его постановки заставляет ребенка задуматься в поисках ответа, втянуться в игру воображения.
Из всего многообразия головоломок наиболее приемлемы в старшем дошкольном возрасте(5-7 лет) головоломки с палочками (можно использовать спички без серы). Их называют задачами на смекалку геометрического характера, так как в ходе решения, как правило, идет трансфигурация, преобразование одних фигур в другие, а не только изменение их количества. В дошкольном возрасте используются самые простые головоломки. Для организации работы с детьми необходимо иметь наборы обычных счетных палочек для составления из них наглядно представленных задач-головоломок. Кроме этого, потребуются таблицы с графически изображенными на них фигурами, которые подлежат преобразованию. На обратной стороне таблиц указывается, какое преобразование надо проделать и какая фигура должна получиться в результате.
Для детей 5-7 лет задачи-головоломки можно объединить в 3 группы (по способу перестроения фигур, степени сложности).
Задачи на составление заданной фигуры из определенного количества палочек : составить 2 равных квадрата из 7 палочек, 2 равных треугольника из 5 палочек.
Задачи на изменение фигур, для решения которых надо убрать указанное количество палочек.
Задачи на смекалку, решение которых состоит в перекладывании палочек с целью видоизменения, преобразования заданной фигуры.
В ходе обучения способам решения, задачи на смекалку даются в указанной последовательности, начиная с более простых, с тем чтобы усвоенные детьми умения и навыки готовили ребят к более сложным действиям. Организуя эту работу, воспитатель ставит цель - учить детей приемам самостоятельного поиска решения задач, не предлагая никаких готовых приемов, способов, образцов решения.
Самые простые задачи первой группы дети без труда смогут решать, если ежедневно упражнять их в составлении геометрических фигур (квадратов, прямоугольников, треугольников) из счетных палочек. В начальный период обучения детей 5 лет решению простых задач на смекалку они самостоятельно, в основном практически действуя с палочками, ищут путь решения. Для развития у детей умения планировать ход мысли следует предлагать им высказывать предварительные суждения или действовать и рассуждать одновременно, объясняя способ и путь решения.
Возможно несколько видов решения задач первой группы. Усвоив способ пристроения фигур при условии общности сторон, дети очень легко и быстро дают 2-3 варианта решения. Каждая фигура при этом отличается от прежней пространственным положением. Одновременно ребята осваивают способ построения заданных фигур путем деления полученной геометрической фигуры на несколько (четырехугольник или квадрат - на 2 треугольника, прямоугольник - на 3 квадрата).
Предлагая детям 5-7 лет более сложные задачи на перестроение фигур, следует начинать с тех, в которых для изменения фигуры надо убрать определенное количество палочек, и наиболее простых - на перекладывание палочек.
Процесс решения задач второй и третьей групп гораздо сложнее, нежели первой группы. Нужно запомнить и осмыслить характер преобразования и результат (какие фигуры должны получиться и сколько) и постоянно в ходе поисков решения соотносить его с предполагаемыми или уже осуществленными изменениями. Необходим зрительный и мыслительный анализ задачи, умение представить возможные изменения в фигуре.
От решения задач-головоломок с помощью воспитателя (частичные подсказки, наводящие вопросы, подтверждение верного хода решения) дошкольники переходят к самостоятельным действиям. Дети 6-7 лет могут сами придумывать элементарные задачи на смекалку (головоломки, с палочками). Для этого педагогу необходимо побеседовать с ними о том, как придумываются такие задачи, что в них задано (какая-либо фигура, какое преобразование требуется осуществить (видоизменить фигуру, уменьшить или увеличить количество квадратов, треугольников, прямоугольников).
Задачи - головоломки геометрического характера целесообразно частично включать непосредственно в содержание занятий по формированию элементарных математических представлений в старшей и подготовительной к школе группах с целью активизации детской мысли, развития логического мышления, выработки умения догадываться, сообразительности, что необходимо каждому человеку для жизни, трудовой деятельности. При этом следует соблюдать строгую последовательность в усложнении самих задач, требований к поисковым действиям детей. От занятия к занятию уточняется и усложняется анализ задач, характер поиска решения, уровень проявления самостоятельности мышления, сочетание действий и рассуждений.
Таким образом, для успешного освоения программы школьного обучения ребенку необходимо не только много знать, но и последовательно и доказательно мыслить, догадываться, проявлять умственное напряжение. Интеллектуальная деятельность, основанная на активном думании, поиске способов действий, уже в дошкольном возрасте при соответствующих условиях может стать привычной для детей.
Заключение
При систематическом использовании дидактических игр на занятиях и в свободной деятельности у детей не возникает трудностей по формированию представлений о геометрических фигурах. Дети легко ориентируются в названиях фигур и свободно могут их составлять и преобразовывать. Познание геометрических фигур, их свойств и отношений расширяет кругозор детей, позволяет им более точно и разносторонне воспринимать форму окружающих предметов, что положительно отражается на их продуктивной деятельности (например, рисовании, лепке).