Юлия
Методика организации игр на листе бумаги как средство обогащения логико-математического опыта старших дошкольников
▼ Скачать + Заказать документы
Освоенные математические представления, логико-математические средства и способы познания (эталоны, модели, речь, сравнение и др.) составляют первоначальный логико-математический опыт ребёнка. Этот опыт является началом познания окружающей действительности, первым вхождением в мир математики. Знаменитые педагоги прошлого и современности занимались разработкой и последующим внедрением материалов, способствующих освоению детьми представлений о логико-математических связях и зависимостях. Согласно исследованиям П. Я. Гальперина, Л. Ф. Обуховой, Д. Б. Эльконина и других, развитие умственных действий происходит успешно в процессе овладения детьми средствами выделения существенных отношений, лежащих за их непосредственным восприятием. Математическое моделирование — одно из таких средств. Усваивая способы использования моделей, дети открывают для себя область математических отношений на уровне таких важных понятий, как число, величина, форма, количество, порядок, классификация, сериация.
Темочки:
- Игры для детей
- Консультации для педагогов и воспитателей
- Логическое мышление. Консультации для педагогов
- Математика и логика. Игры, дидактические пособия
- Математика. Математические представления, ФЭМП
- Старшая группа
- Темочки
Моделирование, с одной стороны, является ступенью для развития конструкторских навыков детей, а с другой — основой для творческого процесса модификации исходной конструкции на более высоком логико-схематическом уровне. Математическое моделирование представляется актуальной для обогащения действующих методик умственного воспитания, математического развития ребёнка в свете требований Федерального государственного образовательного стандарта дошкольного образования, с учётом преемственности между детским садом и начальной школой; несут интересные идеи, облегчающие процесс математического развития ребёнка в условиях семьи. Использование математического моделирования с детьми учитывает логику развития познавательных способностей ребё нка:
на первом этапе дети овладевают навыками непосредственного замещения частей схем моделей реальными предметами.
• на втором этапе переходят к освоению действий по анализу, использованию и усовершенствованию готовых моделей.
• на третьем этапе усваивают действия по самостоятельному построению моделей по схемам и конструированию новых моделей и схем.
С этих позиций процесс математического моделирования позволяет проследить логику развития познавательных способностей ребё нка:
освоение действий по самостоятельному построению моделей по схемам и конструированию новых моделей и их схем — в старшем дошкольном возрасте. Ребёнок осваивает соотнесение «обозначаемое — обозначающее», которое является сущностью семиотической функции. Семитическая функция понимается как целостное образование, включающее различение «обозначаемого» (и в нё м: предмет и знак) и «обозначающего» (форму и содержание); определение связи между ними. С точки зрения технологии математического моделирования делятся на виды в соответствии с авторскими подходами исследователей. Так, согласно З. А. Михайловой, технологии можно классифицировать по логике действий, выделяя: математические развлечения; логические игры, задачи, упражнения; дидактические игры и упражнения. Технологии, описанные Б. П. Никитиным, классифицируются на два типа по уровню продуктивности умственного развития: основанные на подражании и на эвристическом познании закономерностей моделей. Г. А. Репина классифицирует технологию математического моделирования с дошкольниками по теоретико-множественному смыслу (нахождение целого заданной инвариантной формы, как объединения различных серий классов его разбиения; нахождение целого дискретно меняющейся формы, как объединения константных классов разбиения заданной исходной формы) и по пространственной ориентации (плоскостное моделирование на базе разрезания прямоугольника, пространственное моделирование на базе разрезания прямоугольного параллелепипеда, на базе материалов, допускающих непрерывные деформации, на базе классического оригами). Технологии моделирования на плоскостных и пространственных материалах, вызывая живой интерес у детей, развивают их аналитико-синтетические, творческие способности, зрительную память, воображение, мелкую моторику. Поэтому знакомство дошкольников с миром математического моделирования на основе применения плоскостных, пространственных технологий, разработанных на основе логико-математических конструкторских игр, математических головоломок является наиболее интересным и увлекательным.
Плоскостное моделирование на базе разрезания прямоугольника. «Сложи квадрат» Эта игра возникла из головоломки, в которой требовалось из нескольких частей различной формы сложить квадрат. Сущность игры: из нескольких частей, представляющих собой простейшие геометрические фигуры и их комбинации, необходимо сложить квадрат.
В старшем возрасте. Задания сводятся к тому, чтобы ребёнок мог разобрать все квадраты по цвету, номерам и уложить их нужном порядке за максимально короткое время. Предлагаются задания по придумыванию по изготовлению новых вариантов разрезания квадрата. В результате дети овладевают зрительным способом обследования фигур, усваивают способы присоединения одной фигуры к другой с целью получения квадрата.
В старшем возрасте. 1 Моделирование фигур сложной конструкции по схеме с помощью большого одноцветного квадрата, используя игровые ситуации. 2 Моделирование фигур по словесному руководству. 3 Моделирование фигур по памяти. 4 Разбор готовой фигурки и зарисовка схемы её моделирования. 5
Составление фигур по собственному замыслу. В результате дети знакомятся с основными геометрическими понятиями (точка, отрезок, угол, сторона, треугольник, квадрат, прямоугольник, ромб; прямой острый, тупой углы; сторона и т. д.). Развивается глазомер детей, мелкая моторика рук, активизируются мыслительные процессы.
«Кубики для всех» (авторская версия Б. П. Никитина) другой частный случай классификации множества единичных кубиков, на которые разбит прямоугольный параллелепипед, представляет собой материал «Кубики для всех». 27 единичных кубиков объёма заданного большого куба разделены на 7 одноэлементных классов (среди составленных из единичных кубиков фигур нет равных). Сущность игры — построение модели из фигур набора «Кубики для всех» по заданному изображению.
В старшем возрасте. 1 Выполнение заданий по чёрно-белой схеме из трёх исходных. 2 Выполнение заданий по словесному указанию из трёх исходных. 3 Создание новых фигур из трёх исходных.
Моделирование из 4–7 фигур можно использовать при индивидуальной работе с одарёнными детьми. Для развития познавательных способностей детей во время моделирования не стоит часто помогать детям, следует активно поощрять их попытку найти решение. В результате дети учатся мысленно анализировать задание, оперировать пространственными образами, узнавать исходные фигуры, комбинировать их, создавая новые фигуры. Организуя моделирование на плоскости, пространственном материале важно активно использовать на каждом из этапов рассмотренных выше технологий традиционно эффективные для математического развития детей дидактические упражнения: «Найди такую же фигуру», «Опиши различия фигур», «Какой фигуры не хватает», «Какая фигура является лишней», «На что похожа фигура», «Разбей фигуры на группы разными способами», «Назови предметы, похожие на выбранную фигуру», «Нарисуй выбранную фигуру» и т. д. Вовлечение детей в моделирование и выполнение дидактических упражнений лучше реализовать за счет использования игровых ситуаций. А какую из игр выбрать педагог решает по ходу развития учебной ситуации в соответствии с приведённой выше логикой моделирования и особенностями воспитанников.