Саварина Ольга
Конспект открытого урока в 8 классе «Квадратные уравнения»
▼ Скачать + Заказать документы
Открытый урок по алгебре в 8 классе.
Тема урока «Решение квадратных уравнений»
Цели урока.
Образовательные: обобщение и систематизация основных знаний и умений по теме, формирование умения решать квадратные уравнения.
Развивающие: развитие логического мышления, памяти, внимания, умения обобщать; формирование умения выделять главное, развитие познавательного интереса, мыслительной деятельности, вычислительных навыков, кругозора школьников.
Публикация «Конспект открытого урока в 8 классе „Квадратные уравнения“» размещена в разделах
- Средняя школа, 8 класс
- Средняя школа. 5-9 классы
- Школа. Материалы для школьных педагогов
- Темочки
- Конкурс для воспитателей и педагогов «Лучший конспект занятия (НОД)» октябрь 2020
Воспитательные: воспитание самостоятельности, трудолюбия, взаимопомощи, взаимоуважения, осмысленной учебной деятельности и воспитание математической речевой культуры.
Задачи урока :
- применить полученные знания на практике;
- самоконтроль, самооценка, умение действовать в нестандартной ситуации;
- расширить кругозор учащихся.
Тип урока : урок обобщения и систематизации знаний.
Формы работы на уроке : индивидуальная, фронтальная, коллективная.
Методы обучения: эвристический, тестовая проверка уровня знаний, решение обобщающих задач, системные обобщения, самопроверка.
Ход урока.
Определение темы урока (2 мин).
Учитель: Здравствуйте дети и гости. Садитесь, пожалуйста. Хотелось бы начать урок с такого стихотворения:
Чтобы «х» нам узнать, надо дробь написать.
«b» в числителе поставить, знак при этом изменить.
И советуем плюс, минус перед корнем не забыть.
А под корнем «b» квадрат, минус, только не спешить,
«a» на «с» умножить нужно, а потом учетверить.
Вот числитель весь, друзья. В знаменателе «2а».
Как выдумаете, о чем это стихотворение? ( Ответ: формула корней квадратного уравнения)
Совершенно верно и тема сегодняшнего занятия «Решение квадратных уравнений»
Каждый из вас сегодня имеет возможность получить оценку за урок по результатам работы на различных его этапах. Для этого у вас на партах лежат карты результативности, в которые вы будете фиксировать свой успех в баллах. И еще один необсуждаемый закон: для ответа на поставленный вопрос вы поднимаете руку и ни в коем случае не перебиваете друг друга. Желаю всем удачи.
Приступим к работе. Для того чтобы включиться в работу и сконцентрироваться, предлагаю вам небольшую устную разминку. Но вопросы будут не только по теме урока, проверяем ваше внимание и умение переключаться. За каждый правильный ответ в колонку “Разминка” вы по моему указанию ставите 1 балл.
1. Какое название имеет уравнение второй степени?
2. От чего зависит количество корней квадратного уравнения?
3. Когда начался XXI век?
4. Сколько корней имеет квадратное уравнение, если D больше 0?
5. Что значит решить уравнение?
6. Как называется квадратное уравнение, у которого первый коэффициент - 1?
7. Сколько раз в году встает солнце?
8. Сколько корней имеет квадратное уравнение, если дискриминант меньше 0?
9. Есть у любого слова, у растения и может быть у уравнения?
Попрошу открыть тетради, записать число и тему сегодняшнего урока.
“Решение квадратных уравнений”.
Уравнения с давних времен волновали умы человечества. По этому поводу у английского поэта средних веков Чосера есть прекрасные строки, предлагаю сделать их эпиграфом нашего урока :
Посредством уравнений, теорем
Я уйму всяких разрешил проблем.
Квадратные уравнения тоже не исключение. Они очень важны и для математики и для других наук. На ближайших уроках математики вам предстоит решать текстовые задачи, и вот тут-то необходимо уметь быстро и умело справляться с решением квадратных уравнений.
Раз уж мы говорим об уравнениях, давайте вспомним – что это такое?
- Равенство, содержащее неизвестное.
Является ли уравнением выражение (х + 1 (х – 4) = 0?
• Да
Запишите его в тетрадях. Каким наиболее рациональным способом мы можем его решить?
• Приравнивая каждый множитель к нулю. Произведение равно нулю, когда один из множителей равен нулю, а другой при этом имеет смысл.
Хорошо.
Решите, пожалуйста, это уравнение.
х = -1 и х = 4.
А можно ли его решить другим способом?
• Да, его можно привести к квадратному уравнению.
Напомните, какие уравнения называются квадратными?
• Уравнения вида ах2 + вх + с = 0.
Приведите наше уравнение к такому виду.
х2 – 3х – 4 = 0
Назовите его коэффициенты. А что еще вы можете сказать об этом уравнении?
- Оно полное и приведенное.
А какие еще виды квадратных уравнений вам известны?
Отвечают
Хорошо.
Устный счет
Вычислить:
Теперь давайте проверим, насколько хорошо вы умеете определять виды квадратных уравнений. Вашему вниманию предлагается тест, в котором записаны пять уравнений. Напротив каждой колонки вы ставите плюс, если оно принадлежит к данному виду.
Тест “Виды квадратных уравнений”
Ф. И. полное неполное приве-
денное неприве-
денное Общий балл
1. х2 + 8х +3 = 0
2. 6х2 + 9 = 0
3. х2 – 3х = 0
4. –х2 + 2х +4 = 0
5. 3х + 6х2 + 7
Критерий оценивания
Нет ошибок – 5 б.
1 – 2 ош. – 4б.
3 - 4 ош. - 3б.
5 - 6 ош. – 2б.
Более 6 ош. – 0 б.
Ребята выполняют работу, а затем меняются листочками и по ключу проверяют ответы, оценивая работу товарища. Результат записывается в колонку “Оценочный балл”, а затем в “Карту результативности”.
Ключ к тесту:
1. + +
2. + +
3. + +
4. + +
5. + +
Молодцы. С видами квадратных уравнений мы разобрались. Кстати, а вы знаете, когда появились первые квадратные уравнения?
Очень давно. Их решали в Вавилоне около 2000 лет до нашей эры. Итальянский ученый Леонард Фибоначчи изложил формулы квадратного уравнения. И лишь в 17 веке, благодаря Ньютону, Декарту и другим ученым эти формулы приняли современный вид.
Вопросы
А с каким еще понятием мы постоянно сталкиваемся при решении квадратных уравнений?
• С дискриминантом
А вот понятие D придумал английский ученый Сильвестр, он называл себя даже “математическим Адамом” за множество придуманных терминов. А зачем он нам нужен?
• Он определяет число корней квадратного уравнения.
И как количество корней зависит от D?
Дети перечисляют случаи.
Итак, давайте еще раз проговорим алгоритм решения полного квадратного уравнения.
Проговаривают.
Ну что ж, приступим к практической части нашего урока.
Чтобы решить уравнение,
Корни его отыскать.
Нужно немного терпения,
Ручку, перо и тетрадь.
Перед вами список различных уравнений. Посмотрите внимательно на уравнения 1-3 и скажите : являются ли эти уравнения квадратными?
Да. Потому что наивысшая степень 2.
А что нас смущает во внешнем виде этих уравнений?
Они записаны не в стандартном виде.
Итак, преобразуйте данные уравнения к стандартному виду.
1. х + 5х2 = 6 5х2 + х - 6 = 0
2. 4х – 5 + x2 = 0 х2 + 4х - 5 = 0
3. (2 - 5х)2 = 9 25х2 – 20х – 5 = 0
Решите уравнения.
3х2 + 32х +80 = 0
100х2 -160х +63= 0
х2 – 64= 0
-х2 + 8х = 0
х2 -12х = 0
6х2 = 0
х2 + 6х +3 = 0
. Коэффициентам каждого уравнения соответствует определённая буква. Найдите это слово. (Молодцы).
Ц М Л Ы О Д О
6,0,0 3,32,80 1,0,-64 1,6,3 100,-160,63 1,-12,0 -1,8,0
Хорошо. Вместе мы поработали. Теперь посмотрим, как вы умеете работать самостоятельно. Вам предлагается трехуровневая работа. Если вы еще не уверены в своих силах и желаете закрепить решение уравнение, то выбираете уровень А (1 балл за задание). Если считаете, что материал усвоен хорошо – В (2 балла за задание). А если желаете испробовать свои силы на более сложных заданиях – уровень С (3 балла за задание) для вас. В процессе решения я проверяю ваши работы и проставляю заработанные баллы.
Вариант 1.
Уровень А
№1. Для каждого уравнения вида ax2 + bx + c = 0 укажите значения a, b, c.
а) 3х2 + 6х – 6 = 0, б) х2 - 4х + 4 = 0
№2. Продолжите вычисление дискриминанта D квадратного уравнения ax2 + bx + c = 0 по формуле D = b2 - 4ac.
5х2 - 7х + 2 = 0, D = b2 - 4ac = (-7)2 – 4· 5 · 2 = …;
№3. Закончите решение уравнения 3х2 - 5х – 2 = 0.
D = b2 - 4ac = (-5)2- 4· 3·(-2) = 49; х1 = … х2=…
Уровень В Решите уравнение : а) 6х2 – 4х + 32 = 0; б) х2 + 5х - 6 = 0.
Уровень С
Решите уравнение : а) -5х2 – 4х + 28 = 0; б) 2х2–8х–2=0
Доп. задание. При каком значении а уравнение х2 - 2ах + 3 = 0 имеет один корень?
Вариант 2.
Уровень А
№1. Для каждого уравнения вида ax2 + bx + c = 0 укажите значения a, b, c.
а) 4х2 - 8х + 6 = 0, б) х2 + 2х - 4 = 0
№2. Продолжите вычисление дискриминанта D квадратного уравнения ax2 + bx + c = 0 по формуле D = b2 - 4ac.
5х2 + 8х - 4 = 0, D = b2 - 4ac = 82 – 4· 5 · (- 4) = …;
№3. Закончите решение уравнения х2 - 6х + 5 = 0.
D = b2 - 4ac = (-6)2 - 4· 1·5 = 16; х1 = … х2=…
Уровень В Решите уравнение : а) 3х2 – 2х + 16 = 0; б) 3х2 - 5х + 2 = 0.
Уровень С
Решите уравнение : а) 5х2 + 4х - 28 = 0; б) х2 – 6х + 7 = 0; x1=3+, x2=3– .
Доп. задание. При каком значении а уравнение х2 + 3ах + а = 0 имеет один корень.
Итак, мы проделали большую работу. Повторили всю теорию, касающуюся полных квадратных уравнений. Решали различные их виды как вместе, так и вы сами. Вы старательно зарабатывали баллы, настало время подвести итог.
Подсчитайте сумму баллов, заработанных в течение урока.
Критерии оценивания:
15 – 20 баллов – “5”.
9 – 14 баллов – “4”.
5 - 8 баллов – “3”.
Итог урока : выставление оценок
Домашнее задание.