Елена Михеева
Консультация «Формирование элементарных математических представлений в подготовительной группе»
▼ Скачать + Заказать документы
Счёт групп предметов
При закреплении навыков счёта и отсчёта важно упражнять не только в счёте отдельных предметов, но и групп, состоящих из однородных предметов. Детям демонстрируется группа предметов (матрёшки). Вопросы «Сколько групп?» Сколько матрёшек в каждой группе? Сколько всего матрёшек? Каждый раз устанавливают связь между количеством групп и количеством предметов в группе. Дети видят: увеличивают количество предметов в группе — уменьшается количество групп и наоборот. Осуществляется подготовка детей к усвоению десятичной системы счисления, счёту десятками.
Темочки:
- Консультации для педагогов и воспитателей
- Консультации для родителей
- Математика. Консультации для родителей
- Математика. Математические представления, ФЭМП
- Подготовительная группа
- Темочки
У воспитателя на доске 10 кругов. Вопросы сколько кругов? О десяти предметах можно сказать по — другому: один десяток. На следующей полосе помещает ещё 10 кругов. Вопросы сколько здесь кружков? Можно сказать: ещё один десяток. Сколько всего десятков? Два десятка. Что больше 2 десятка или 1? Что меньше? Вывод: 2 десятка больше 1, десяток меньше 2. Можно познакомить детей с использованием счёта группами в повседневной жизни: мелкие предметы удобно покупать десятками (пуговицы, зажимы для волос, булавки, яйца).
Устный счёт
Для уточнения знаний о последовательности натурального ряда чисел используются специальные упражнения на счёт в прямом и обратном порядке. Воспитатель, начиная с 1 предмета, последовательно добавляет предметы по одному, каждый раз спрашивая детей о количестве. Аналогично проводятся упражнения на последовательное уменьшение чисел (было 9 предметов, один убрали, сколько осталось? Сколько надо убрать, чтобы осталось) В интересной форме закрепить знание прямой и обратной последовательности чисел позволяют упражнения лесенкой. Дети «шагают» по ступенькам лесенки то вверх, то вниз, считая либо количество ступенек, которые уже прошли, либо число ступенек, которое им ещё осталось пройти. (Давайте сосчитаем, сколько ступенек до неваляшки. Будем считать, сколько ступенек нам осталось пройти до неваляшки: 10,9,8)
Упражнения с числовыми фигурами.
Вдоль доски в ряд расставлены числовые фигуры от 1 до 10, две фигуры помещают не на свои места. Дети определяют, какая фигура «заблудилась». Ряд фигур может быть расставлен в обратном порядке.
Игра «Разговор чисел»
Вызванные дети получают в руки числовые фигуры. Дети — это числа, а какие, им подскажут числовые карточки. Команда играющим: «Числа, встаньте по порядку, начиная от самого маленького!» После этого воспитатель предлагает рассказать о себе. Например: «Число 4 сказало числу 5: я меньше тебя на один! Что же число 5 ответит ему? А что скажет числу 6?» Для закрепления навыков счё та в прямом и обратном порядке используются игры: «Назови пропущенное число», «Считайте дальше», «Кто знает — пусть дальше считает».
Игра «Кто знает — пусть дальше считает».
Воспитатель объясняет правила игры «Я буду ставить на стол игрушки, а вы считайте, сколько их стало». Итак, на столе 3 кубика. Педагог ставит ещё 1 — ребёнок говорит «четыре» и т. д. Интерес к таким играм повышается, если они проводятся в кругу, воспитатель бросает детям мяч, передаёт платочек. Правила игры не повторять уже названное число, не вести счёт сначала, от числа 1.
Установление взаимо — обратных отношений между смежными числами.
От упражнений в сравнении численностей множеств предметов, выраженных смежными числами, дети переходят к сравнению чисел без опоры на наглядный материал.
Варианты заданий: 1. Отсчитать, положить игрушек на 1 больше (меньше, чем число, которое названо.
2. Назови число, больше 5 (6,7) на 1.
Назови «соседей числа»
Для выполнения таких заданий необходимо объяснить значение слов «до» и «после», «предыдущее и «последующее» число. Выражение «до» указывает на то, что числа меньше, а «после» больше названного. Стоит до 5? Какое после 5?
Назови числа /3,4 числа/, которые идут после 4,
Угадай, какое число пропущено между 7 и 5, 8 и 6?
Назови 2 числа, пропустив между ними 1 число.
Состав числа из двух меньших чисел
Показываются все способы состава чисел в пределах пятка.
Число 2 — это 1 и 1, 3 — это 2 и 1, 1 и 2, 4 — это 3 и 1, 2 и 2, 1 и 3, 5 — это 4 и 1, 2 и 3, 1 и 4.
На наборном полотне 3 кружка одного цвета. Поворачивая обратной стороной последний кружок, спрашиваем «Сколько всего? Как составлена группа? Из 2-х красных и 1-го синего кружка». Затем переворачиваем ещё один, выясняем как теперь составлена группа. Вывод: число 3 можно составить по-разному; из 2 и 1, из 1 и 2. Для закрепления знаний используем упражнения:
Рассказы — задачи «На верхнем проводе сидело 3 ласточки, 1 ласточка пересела на нижний провод. Сколько всего ласточек? Как они теперь сидят? Как они ещё могут сидеть?
Задания: одному ребёнку взять 3 жёлудя /камешка/ в обе руки, остальным догадаться, сколько в каждой руке.
Игра «Угадай число». На карточке от 3 до 5 кружков, другая карточка переворачивается обратной стороной. Нужно отгадать число на перевёрнутой карточке, если вместе они образуют число 3 /4,5/.
Усвоение состава числа из 2 чисел обеспечивает переход к обучению детей вычислению.
Знакомство с цифрами.
В процессе обучению счёту педагог показывает разные способы обозначения какого — либо количества. Для этого справа от группы предметов /после их пересчёта/ выкладывают такое же количество палочек, вывешивают счётную карточку, числовую фигуру. Затем показывают способ графического обозначения числа — цифру. Исследования А. М. Леушиной показали эффективность знакомства с цифрами параллельно с образованием сразу двух чисел. На первом занятии показывается образование чисел 1 и 2, показываются цифры 1 и 2. Число 1 обозначается цифрой 1, читаются стихотворения «Вот один иль единица, очень тонкая, как спица». Широко используются различные обследовательские действия: обведение пальцем по контуру цифры, прорисовка в воздухе, штриховка контурных цифр, а также употребление в ходе обследования образных сравнений (единица как солдатик, 8 похожа на снеговика). Особое внимание заслуживает число 10, так как оно записывается двумя цифрами 0 и 1. Поэтому прежде необходимо познакомить детей с нулём. Понятие о нуле дети получают, выполняя задание отсчитывать предметы по одному. Например, на столе 9 кубиков и цифра 9. Последовательно убирая по одному кубику, воспитатель просит пересчитать и показать соответствующую цифру. Когда на столе остаётся 1 кубик, воспитатель предлагает убрать его. Сколько теперь кубиков? Ни одного или ноль кубиков. Ноль кубиков обозначается цифрой 0. На столе 0 кубиков, а у Коли 1 кубик. Где больше кубиков? Значит, 1 больше 0, 0 меньше 1. Когда все цифры изучены, для их закрепления используются дидактические игры.
Игра «Цифра заблудилась», «Путаница». Цифры раскладываются на стол по порядку, одну или несколько цифр меняют местами. Дети должны найти эти изменения. Игра «Какой цифры не стало?» В игре также убираются 1-2 цифры. Играющие не только замечают изменения, но и говорят, где какая цифра стоит и почему. Игра «Найди соседей цифры». Каждому ребёнку предлагается карточка с изображением цифры, и он должен назвать предыдущую и последующую цифры. Игра «Убираем цифры». Игрой можно заканчивать занятие, если в дальнейшем цифры не понадобятся. Перед всеми на столах разложены цифры. Дети по очереди загадывают загадки про числа. Каждый ребёнок, догадавшийся о какой цифре идёт речь, убирает её из числового ряда. Загадки могут быть самые разнообразные. Например, убрать цифру, которая стоит после цифры 6, перед цифрой 4; убрать цифру, убрать цифру, которая показывает сколько раз я хлопну в ладоши: цифру, которая встречается в сказке о Белоснежке.
Деление целого на части.
С помощью этой задачи осуществляется подготовка к усвоению дробей.
Последовательность работы:
Деление предмета на части путём складывания (сгибания) (Сложить квадрат пополам, на 4 части)
Деление предмета на части путём разрезания. (Разрезать полоску бумаги на 2 части, квадрат на 2 части, чтобы получилось 2 треугольника).
Деление на части «вкусных» вещей: печенье, яблоко, конфета и т. п. Эти задания стимулируют активность детей в усвоении материала. /Что делать, если в магазине нужно купить только полбуханки хлеба, разделить печенье, яблоко между подружками/.
Уравнивая целый предмет и части, дети приходят к выводу: целое больше его половины, половина больше четверти, целое больше четверти. Важно показать детям необходимость точных действий при складывании и разрезании. Предметы могут быть разделены как на равные, так и не на равные части. Половинами части называются лишь тогда, когда части равные. Словарная работа: разделить на части, целое, половина, пополам, одна из двух частей, одна из 4 частей, одна вторая, одна четвёртая часть. На последующих занятиях проводятся упражнения в делении геометрических фигур на 2, 4, 8 частей и составлении целых фигур из частей. Например: как надо сложить и разрезать квадрат, чтобы получилось 2 равных прямоугольника? После того, как дети овладевают приёмами измерения, предлагается разделить палку, рейку, дощечку на 2, 4, 8 равных частей. Ребята видят, что данные предметы не складываются, усвоенные способы деления не подходят. Как быть? Воспитатель раскладывает перед детьми предметы, которые можно использовать в качестве мерки. В итоге с воспитателем дети приходят к выводу, что надо выбрать подходящую мерку отмерить кусок, равный длине предмета, разделить мерку /сложить/ на соответствующее количество частей и затем отмерить эти части на предмете, сделать отметки карандашом. Полезно упражнять в делении геометрических фигур, нарисован на бумаге в клетку. Дети рисуют фигуры заданного размера, а затем по указанию воспитателя делят их на 2, 4 равные части, измеряя по клеткам.