АННА КРАВЧЕНКО
Дидактическая игра как средство формирования элементарных математических представлений
▼ Скачать + Заказать документы
Дидактическая игра как средство формирования элементарных математических представлен
ий. [/b]
Специфика развития математических
представлений дошкольников
В связи с проблемой формирования и развития способностей следует указать, что целый ряд исследований п
Публикация «Дидактическая игра как средство формирования элементарных математических представлений» размещена в разделах
- Дидактические игры
- Математика. Игры и дидактические пособия по ФЭМП
- Математика. Математические представления, ФЭМП
- Темочки
сихологов направлен на выявление структуры способностей дошкольников к различным видам деятельности. При этом под способностями понимается комплекс индивидуально – психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условиям успешного выполнения. Таким образом, способности – сложное, интегральное, психическое образование, своеобразный синтез свойств, или, как их называют компонентов.
Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы.
Способности не есть нечто раз и навсегда предопределенное, они формируются и развиваются в процессе обучения, в процессе упражнения, овладение соответствующей деятельностью, поэтому нужно формировать, развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть как далеко может пойти это развитие.
Говоря о математических способностях как особенностях умственной деятельности, следует прежде всего указать на несколько распространенных среди педагогов заблуждений.
Во – первых, многие считают, что математические способности заключаются прежде всего в способности к быстрому и точному вычислению (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей. Во – вторых, многие думают, что способные к математике отличаются хорошей памятью на формулы, цифры, числа. Однако, как указывает академик А. Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул. Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов. Особенно быстрый темп работы сам по себе не имеет отношения к математических способностям. Ребенок может работать медленно и не торопливо, но в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики.
Крутецкий В. А. в книге «Психология математических способностей дошкольников» различает девять способностей (компонентов математических способностей):
1). Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм оперированию формальными структурами, структурами отношений и связей.
2). Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном.
3). Способность к оперированию числовой и знаковой символикой.
4). Способность к «последовательному, правильно расчлененному логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах.
5). Способность сокращать процесс рассуждения, свернутыми структурами.
6). Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли).
7). Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов.
8). Математическая память. Можно предложить, что ее характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы.
9). Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики как геометрия.
Дети четырех лет активно осваивают счет, пользуются числами, осуществляют элементарные вычисления по наглядной основе и устно, осваивают простейшие временные и пространственные отношения, преобразуют предметы различных форм и величин. Ребенок, не осознавая того, практически включается в простую математическую деятельность, осваивая при этом свойства, отношения, связи и зависимость на предметах и числовом уровне.
Объем представлений следует рассматривать в качестве основы познавательного развития. Познавательные и речевые умения составляют как бы технологию процесса познания, минимум умений, без освоения которых дальнейшее познание мира и развитие ребенка будет затруднительно. Активность ребенка, направленное на познание, реализуется в содержательной самостоятельной игровой и практической деятельности, в организуемых воспитателем познавательных развивающих играх.
Взрослый создает условия и обстановку, благоприятные для вовлечения ребенка в деятельность сравнения, сосчитывания, воссоздания, группировки, перегруппировки и т. д. При этом инициатива в развертывании игры, действия принадлежит ребенку. Воспитатель вычленяет, анализирует ситуацию, направляет процесс ее развития, способствует получению результата.
Ребенка окружают игры, развивающие его мысль и приобщающие его к умственному труду. Например, игры из серии: «Логические кубики», «Уголки», «Составь куб» и другие;
Нельзя обойтись и без дидактических пособий. Они помогают ребенку вычленить анализируемый объект, увидеть его во всем многообразии свойств, установить связи и зависимости, определить элементарные отношения, сходства и отличия. К дидактическим пособиям, выполняющим аналогичные функции, относятся логические блоки Дьенеша, цветные счетные палочки, модели и другие.
Играя и занимаясь детьми, воспитатель способствует развитию у них умений и способностей:
- оперировать свойствами, отношениями объектов, числами, выявлять простейшие изменения и зависимости объектов по форме, величине;
- сравнивать, обобщать группы предметов, соотносить вычленять закономерности чередования и следования, оперировать в плане представлений, стремиться к творчеству;
- проявлять инициативу в деятельности, самостоятельность в уточнении или выдвижении цели, в ходе рассуждений, в выполнении и достижении результата;
- рассказывать о выполняемом или выполненном действии, разговаривать со взрослыми, сверстниками по поводу содержания игрового (практического) действия.
Основные представления, познавательные и речевые умения, которые осваиваются детьми 4-5 лет в процессе овладения математическими представлениями.
Свойства. Представления.
Размер предметов: по длине (длинный, короткий); по высоте (высокий, низкий); по ширине (широкий, узкий); по толщине (толстый, тонкий); по массе (тяжелый, легкий); по глубине (глубокий, мелкий); по объему (большой, маленький).
Геометрические фигуры и тела: круг, овал, квадрат, треугольник, прямоугольник, шар, куб, цилиндр.
Структурные элементы геометрических фигур: сторона, угол, их количество.
Форма предметов: круглый, треугольный, квадратный. Логические связи между группами величин форм: низкие, но толстые; найти общее и различное в группах фигур круглой, квадратной, треугольной форм.
Связи между изменениями (сменой) основания классификации (группировки) и количеством полученных групп, объектах в них.
Познавательные и речевые умения. Целенаправленно зрительно и осязательно двигательным способом обследовать геометрические фигуры, предметы с целью определения формы. Попарно сравнивать геометрические фигуры с целью выделения структурных элементов: углов, сторон, их количества. Самостоятельно находить и применять способ определения формы, размера предметов, геометрических фигур; выражать в речи способ определения таких свойств, как форма, размер; группировать их по признакам.
Отношения. Представления.
Отношения групп предметов: по количеству, по размеру и т. д. Последовательное увлечение (уменьшение) 3-5 предметов.
Пространственные отношения в парных направлениях от себя, от других объектов, в движении в указанном направлении; временные – в последовательности частей суток, настоящем, прошедшем и будущем времени: сегодня, вчера и завтра.
Обобщение 3-5 предметов, звуков, движение по свойствам – размеру, количеству, форме и др.
Познавательные и речевые умения. Сравнивать предметы на глаз, путем наложения, приложения. Выражать в речи количественные, пространственные, временные отношения между предметами, пояснить последовательное увлечение и уменьшение их по количеству, размеру.
Числа и цифры. Представления.
Обозначение количеством числом и цифрой в пределах 5-10. Количественное и порядковое назначение числа. Обобщение групп предметов, звуков и движений по числу. Связи между числом, цифрой и количеством: чем больше предметов, тем больше числом они обозначаются; сосчитывание как однородных, так и разнородных предметов, в разном расположении и т. д.
Познавательные и речевые умения. Сосчитывать, сравнивать по признакам, количеству и числу; воспроизводить количество по образцу и числу; отсчитывать.
Называть числа, согласовывать слова - числительные с существительными в роде, числе, падеже.
Отражать в речи способ практического действия. Отвечать на вопросы: «Как ты узнал, сколько всего?»; «Что ты узнаешь, если сосчитаешь?»
Сохранение количество и величин. Представления.
Независимость количества числа предметов от их расположения в пространстве, сгруппированности.
Неизменность размеров, объема жидких и сыпучих тел, отсутствие или наличие зависимости от формы и размера сосуда.
Обобщение по размеру, числу, по уровню наполненности, одинаковых по форме сосудов и т. д.
Познавательные и речевые умения. Зрительно воспринимать величины, количества, свойства предметов, сосчитывать, сравнивать с целью доказательства равенства или неравенства.
Выражать в речи расположение предметов в пространстве, пользоваться предлогами и наречиями: справа, сверху, от, рядом, с, около, в, на, за, и др. ; пояснить способ сопоставления, обнаружения, соответствия.
Алгоритмы. Представления.
Обозначение последовательности и этапностиучебно - игрового действия, зависимости порядка следования объектов символом (стрелкой). Использование простейших алгоритмов разных типов (линейных и разветвленных).
Познавательные речевые умения. Зрительно воспринимать и понимать последовательность развития, выполнения действия, ориентируясь на направление, указанное стрелкой.
Отражать в речи порядок выполнения действий: сначала; потом; раньше; позже; если, то.
Дети четырёх лет проявляют высокую познавательную активность, они буквально забрасывают старших разнообразными вопросами об окружающем мире. Исследуя предметы, их свойства и качества, дети пользуются разнообразными обследовательскими действиями: умеют группировать объекты по цвету, форме, величине, назначению, количеству; умеют составить целое из 4-6 частей; осваивают счет.
Дети радуются своим достижениям и новым возможностям. Они нацелены на творческие проявления и доброжелательное отношение к окружающим. Индивидуальный подход воспитателя поможет каждому ребенку проявить свои умения и склонности в разнообразной увлекательной деятельности.