Светлана Галактионова
Рабочая программа по алгебре в 9 классе. Пояснительная записка
▼ Скачать + Заказать документы
Пояснительная записка
Рабочая программа по алгебре составлена в соответствии с
Федеральным законом от 29 декабря 2012 года №273-ФЗ «Об образовании в Российской Федерации»;
Приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 года № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования»;
Публикация «Рабочая программа по алгебре в 9 классе, Пояснительная записка» размещена в разделах
- Математика. Конспекты уроков
- Программы образовательные, основные и дополнительные
- Средняя школа, 9 класс
- Средняя школа. 5-9 классы
- Школа. Материалы для школьных педагогов
- Темочки
Приказом Министерства образования и науки Российской Федерации от 29 декабря 2014 года № 1644 «О внесении изменений в приказ Минобрнауки России от 17 декабря 2010 года № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования»;
Приказом Министерства образования и науки Российской Федерации от 31 декабря 2015 года № 1577 «О внесении изменений в федеральный государственный образовательный стандарт основного общего образования, утверждённый приказом Министерства образования и науки Российской Федерации от 17 декабря 2010г. №1897»;
Положением о разработке и использованию рабочих программ учебных предметов, курсов внеурочной деятельности педагогов реализующих ФГОС НОО и ФГОС ООО в МБОУ СОШ №64 г. Брянска;
Учебным планом МБОУ СОШ №64 г. Брянска на 2019-2020 учебный год
Календарным учебным графиком на 2019-2020 учебный год;
Программой общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель: Бурмистрова Т. А. – М. : Просвещение, 2014 г.
Планируемые результаты освоения учебного предмета, курса
Рабочая программа обеспечивает формирование личностных, метапредметных, предметных результатов.
личностные:
сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
метапредметные:
первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.
предметные:
умение работать с математическим текстом (структурирование, извлечение необходимой информации, точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический, обосновывать суждения, проводить классификацию, доказывать математические утверждения;
владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;
умение решать линейные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;
овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
овладение основными способами представления и анализа статистических данных;
умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
Обучающийся научится
• понимать особенности десятичной системы счисления;
• владеть понятиями, связанными с делимостью натуральных чисел;
• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
• сравнивать и упорядочивать рациональные числа;
• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчеты
• использовать начальные представления о множестве действительных чисел;
• владеть понятием квадратного корня, применять его в вычислениях.
использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин
• владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
выполнять разложение многочленов на множители.
• понимать и использовать функциональные понятия и язык (термины, символические обозначения);
• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.
• понимать и использовать язык последовательностей (термины, символические обозначения);
применять формулы, связанные с арифметической и геометрической прогрессий, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.
• Обучающийся научится использовать простейшие способы представления и анализа статистических данных.
• Обучающийся получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.
решать комбинаторные задачи на нахождение числа объектов или комбинаций.
Обучающийся получит возможность научиться:
• познакомиться с позиционными системами счисления с основаниями, отличными от 10;
• углубить и развить представления о натуральных числах и свойствах делимости;
научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ
• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;
• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
• научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).
• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.
• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.
• решать комбинированные задачи с применением формул п-го члена и суммы первых п членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;
понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом
• решать комбинированные задачи с применением формул п-го члена и суммы первых п членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;
понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом
• возможность приобрести опыт проведения случайных экспериментов, в том числе, с помощью компьютерного моделирования, интерпретации их результатов.
• научиться некоторым специальным приёмам решения комбинаторных задач.
Рабочая программа предусматривает следующие формы текущего контроля успеваемости и промежуточной аттестации обучающихся:
• контрольные работы;
• самостоятельные работы;
• тестовые работы;
• индивидуальные карточки с разнотипными задачами.
Промежуточная аттестация осуществляется раз в год и проходит в форме контрольной работы.
Повторение (3 часа) за счет обобщающего повторения в конце года с целью систематизации и обобщения материала, изученного ранее, и написания входной контрольной работы.