Оксана Александровна Зуева
Рабочая программа по предмету «Алгебра 7–9 класс»
▼ Скачать + Заказать документы
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО КУРСА "АЛГЕБРА"
Рабочая программа по учебному курсу "Алгебра" для обучающихся 7-9 классов разработана на основе Федерального государственного образовательного стандарта основного общего образования с учётом и современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования, которые обеспечивают овладение ключевыми компетенциями, составляющими основу для непрерывного образования и саморазвития, а также целостность общекультурного, личностного и познавательного развития обучающихся. В программе учтены идеи и положения Концепции развития математического образования в Российской Федерации. В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без базовой математической подготовки. Уже в школе математика служит опорным предметом для изучения смежных дисциплин, а после школы реальной необходимостью становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической.
Публикация «Рабочая программа по предмету „Алгебра 7–9 класс“» размещена в разделах
- Математика. Конспекты уроков
- Программы образовательные, основные и дополнительные
- Средняя школа, 7 класс
- Средняя школа, 9 класс
- Средняя школа. 5-9 классы
- Школа. Материалы для школьных педагогов
- Темочки
Это обусловлено тем, что в наши дни растёт число профессий, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг школьников, для которых математика может стать значимым предметом, расширяется.
Практическая полезность математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и прикладных идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты и составлять алгоритмы, находить и применять формулы, владеть практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм и графиков, жить в условиях неопределённости и понимать вероятностный характер случайных событий.
Одновременно с расширением сфер применения математики в современном обществе всё более важным становится математический стиль мышления, проявляющийся в определённых умственных навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике и в формировании алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые. В процессе решения задач — основой учебной деятельности на уроках математики — развиваются также творческая и прикладная стороны мышления.
Обучение математике даёт возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.
Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека.
Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.
ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА "АЛГЕБРА"
Алгебра является одним из опорных курсов основной школы: она обеспечивает изучение других дисциплин, как естественнонаучного, так и гуманитарного циклов, её освоение необходимо для продолжения образования и в повседневной жизни. Развитие у обучающихся научных представлений о происхождении и сущности алгебраических абстракций, способе отражения математической наукой явлений и процессов в природе и обществе, роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения и качеств мышления, необходимых для адаптации в современном цифровом обществе. Изучение алгебры естественным образом обеспечивает развитие умения наблюдать, сравнивать, находить закономерности, требует критичности мышления, способности аргументированно обосновывать свои действия и выводы, формулировать утверждения. Освоение курса алгебры обеспечивает развитие логического мышления обучающихся: они используют дедуктивные и индуктивные рассуждения, обобщение и конкретизацию, абстрагирование и аналогию. Обучение алгебре предполагает значительный объём самостоятельной деятельности обучающихся, поэтому самостоятельное решение задач естественным образом является реализацией деятельностного принципа обучения.
В структуре программы учебного курса «Алгебра» основной школы основное место занимают содержательно-методические линии: «Числа и вычисления»; «Алгебраические выражения»; «Уравнения и неравенства»; «Функции». Каждая из этих содержательно-методических линий развивается на протяжении трёх лет изучения курса, естественным образом переплетаясь и взаимодействуя с другими его линиями. В ходе изучения курса обучающимся приходится логически рассуждать, использовать теоретико-множественный язык. В связи с этим целесообразно включить в программу некоторые основы логики, пронизывающие все основные разделы математического образования и способствующие овладению обучающимися основ универсального математического языка. Таким образом, можно утверждать, что содержательной и структурной особенностью курса «Алгебра» является его интегрированный характер.
Содержание линии «Числа и вычисления» служит основой для дальнейшего изучения математики, способствует развитию у обучающихся логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых для повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием представлений о действительном числе. Завершение освоения числовой линии отнесено к старшему звену общего образования.
Содержание двух алгебраических линий — «Алгебраические выражения» и «Уравнения и неравенства» способствует формированию у обучающихся математического аппарата, необходимого для решения задач математики, смежных предметов и практико-ориентированных задач. В основной школе учебный материал группируется вокруг рациональных выражений. Алгебра демонстрирует значение математики как языка для построения математических моделей, описания процессов и явлений реального мира. В задачи обучения алгебре входят также дальнейшее развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.
Содержание функционально-графической линии нацелено на получение школьниками знаний о функциях как важнейшей математической модели для описания и исследования разно образных процессов и явлений в природе и обществе. Изучение этого материала способствует развитию у обучающихся умения использовать различные выразительные средства языка математики — словесные, символические, графические, вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.
МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ
Согласно учебному плану в 7—9 классах изучается учебный курс «Алгебра», который включает следующие основные разделы содержания: «Числа и вычисления», «Алгебраические выражения», «Уравнения и неравенства», «Функции».
Учебный план на изучение алгебры в 7—9 классах отводит не менее 3 учебных часов в неделю в течение каждого года обучения, всего за три года обучения — не менее 306 учебных часов.
СОДЕРЖАНИЕ УЧЕБНОГО КУРСА "АЛГЕБРА"
7 КЛАСС
Числа и вычисления
Рациональные числа.
Дроби обыкновенные и десятичные, переход от одной формы записи дробей к другой. Понятие рационального числа, запись, сравнение, упорядочивание рациональных чисел. Арифметические действия с рациональными числами. Решение задач из реальной практики на части, на дроби.
Степень с натуральным показателем: определение, преобразование выражений на основе определения, запись больших чисел. Проценты, запись процентов в виде дроби и дроби в виде процентов. Три основные задачи на проценты, решение задач из реальной практики.
Применение признаков делимости, разложение на множители натуральных чисел. Реальные зависимости, в том числе прямая и обратная пропорциональности.
Алгебраические выражения
Переменные, числовое значение выражения с переменной. Допустимые значения переменных. Представление зависимости между величинами в виде формулы. Вычисления по формулам. Преобразование буквенных выражений, тождественно равные выражения, правила преобразования сумм и произведений, правила раскрытия скобок и приведения подобных слагаемых.
Свойства степени с натуральным показателем.
Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращё нного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Разложение многочленов на множители.
Уравнения
Уравнение, корень уравнения, правила преобразования уравнения, равносильность уравнений. Линейное уравнение с одной переменной, число корней линейного уравнения, решение линейных уравнений. Составление уравнений по условию задачи. Решение текстовых задач с помощью уравнений. Линейное уравнение с двумя переменными и его график. Система двух линейных уравнений с двумя переменными. Решение систем уравнений способом подстановки. Примеры решения текстовых задач с помощью систем уравнений.
Координаты и графики. Функции
Координата точки на прямой. Числовые промежутки. Расстояние между двумя точками координатной прямой. Прямоугольная система координат, оси Ox и Oy. Абсцисса и ордината точки на координатной плоскости. Примеры графиков, заданных формулами. Чтение графиков реальных зависимостей. Понятие функции. График функции. Свойства функций. Линейная функция, её график. График функции y= IхI. Графическое решение линейных уравнений и систем линейных уравнений.
8 КЛАСС
Числа и вычисления
Квадратный корень из числа. Понятие об иррациональном числе. Десятичные приближения иррациональных чисел. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям. Действительные числа.
Алгебраические выражения
Квадратный трёхчлен; разложение квадратного трёхчлена на множители.
Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Рациональные выражения и их преобразование.
Уравнения и неравенства
Квадратное уравнение, формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Простейшие дробно-рациональные уравнения.
Графическая интерпретация уравнений с двумя переменными и систем линейных уравнений с двумя переменными. Примеры решения систем нелинейных уравнений с двумя переменными.
Решение текстовых задач алгебраическим способом.
Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Системы линейных неравенств с одной переменной.
Функции
Понятие функции. Область определения и множество значений функции. Способы задания функций.
График функции. Чтение свойств функции по её графику. Примеры графиков функций, отражающих реальные процессы.
Функции, описывающие прямую и обратную пропорциональные зависимости, их графики. Функции y = x, y = x, у= х, y= IхI.
Графическое решение уравнений и систем уравнений.
9 КЛАСС
Числа и вычисления
Рациональные числа, иррациональные числа, конечные и бесконечные десятичные дроби. Множество действительных чисел; действительные числа как бесконечные десятичные дроби. Взаимно однозначное соответствие между множеством действительных чисел и координатной прямой.
Сравнение действительных чисел, арифметические действия с действительными числами.
Измерения, приближения, оценки.
Размеры объектов окружающего мира, длительность процессов в окружающем мире.
Приближённое значение величины, точность приближения. Округление чисел. Прикидка и оценка результатов вычислений.
Уравнения и неравенства
Уравнения с одной переменной.
Линейное уравнение. Решение уравнений, сводящихся к линейным. Квадратное уравнение. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение. Примеры решения уравнений третьей и четвёртой степеней разложением на множители. Решение дробно-рациональных уравнений. Решение текстовых задач алгебраическим методом.
Системы уравнений.
Уравнение с двумя переменными и его график. Решение систем двух линейных уравнений с двумя переменными. Решение систем двух уравнений, одно из которых линейное, а другое — второй степени. Графическая интерпретация системы уравнений с двумя переменными.
Решение текстовых задач алгебраическим способом.
Неравенства
Числовые неравенства и их свойства. Решение линейных неравенств с одной переменной. Решение систем линейных неравенств с одной переменной. Квадратные неравенства. Графическая интерпретация неравенств и систем неравенств с двумя переменными.
Функции
Квадратичная функция, её график и свойства. Парабола, координаты вершины параболы, ось симметрии параболы.
Графики функций: y = kx, y = kx + b, y=k/x. У= х, y=x. y = I х I и их свойства.
Числовые последовательности
Определение и способы задания числовых последовательностей.
Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.
Арифметическая и геометрическая прогрессии.
Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n членов.
Изображение членов арифметической и геометрической прогрессий точками на координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.
ПЛАНИРУЕМЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ
Освоение учебного курса «Алгебра» должно обеспечивать достижение на уровне основного общего образования следующих личностных, метапредметных и предметных образовательных результатов:
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
Личностные результаты освоения программы учебного курса «Алгебра» характеризуются:
Патриотическое воспитание:
проявлением интереса к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках и прикладных сферах.
Гражданское и духовно-нравственное воспитание:
готовностью к выполнению обязанностей гражданина и реализации его прав, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.); готовностью к обсуждению этических проблем, связанных с практическим применением достижений науки, осознанием важности мораль- но-этических принципов в деятельности учёного.
Трудовое воспитание:
установкой на активное участие в решении практических задач математической направленности, осознанием важности математического образования на протяжении всей жизни для успешной профессиональной деятельности и развитием необходимых умений;
осознанным выбором и построением индивидуальной траектории образования и жизненных планов с учётом личных интересов и общественных потребностей.
Эстетическое воспитание:
способностью к эмоциональному и эстетическому восприятию математических объектов, задач, решений, рассуждений; умению видеть математические закономерности в искусстве.
Ценности научного познания:
ориентацией в деятельности на современную систему научных представлений об основных закономерностях развития человека, природы и общества, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации;
овладением языком математики и математической культурой как средством познания мира;
овладением простейшими навыками исследовательской деятельности.
Физическое воспитание, формирование культуры здоровья и эмоционального благополучия:
готовностью применять математические знания в интересах своего здоровья, ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность);
сформированностью навыка рефлексии, признанием своего права на ошибку и такого же права другого человека.
Экологическое воспитание:
ориентацией на применение математических знаний для решения задач в области сохранности окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды;
осознанием глобального характера экологических проблем и путей их решения.
Личностные результаты, обеспечивающие адаптацию обучающегося к изменяющимся условиям социальной и природной среды:
• готовностью к действиям в условиях неопределённости, повышению уровня своей компетентности через практическую деятельность, в том числе умение учиться у других людей, приобретать в совместной деятельности новые знания, навыки и компетенции из опыта других;
• необходимостью в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы об объектах и явлениях, в том числе ранее не известных, осознавать дефициты собственных знаний и компетентностей, планировать своё развитие;
• способностью осознавать стрессовую ситуацию, воспринимать стрессовую ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и действия, формулировать и оценивать риски и последствия, формировать опыт.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Метапредметные результаты освоения программы учебного курса «Алгебра» характеризуются овладением универсальными познавательными действиями, универсальными коммуникативными действиями и универсальными регулятивными действиями.
1) Универсальные познавательные действия обеспечивают формирование базовых когнитивных процессов обучающихся (освоение методов познания окружающего мира; применение логических, исследовательских операций, умений работать с информацией).
Базовые логические действия:
• выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
• воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; условные;
• выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий;
• делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;
• разбирать доказательства математических утверждений (прямые и от противного, проводить самостоятельно несложные доказательства математических фактов, выстраивать аргументацию, приводить примеры и контрпримеры; обосновывать собственные рассуждения;
• выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).
Базовые исследовательские действия:
• использовать вопросы как исследовательский инструмент познания; формулировать вопросы, фиксирующие противоречие, проблему, самостоятельно устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;
• проводить по самостоятельно составленному плану несложный эксперимент, небольшое исследование по установлению особенностей математического объекта, зависимостей объектов между собой;
• самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;
• прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.
Работа с информацией :
• выявлять недостаточность и избыточность информации, данных, необходимых для решения задачи;
• выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
• выбирать форму представления информации и иллюстрировать решаемые задачи схемами, диаграммами, иной графикой и их комбинациями;
• оценивать надёжность информации по критериям, предложенным учителем или сформулированным самостоятельно.
2) Универсальные коммуникативные действия обеспечивают сформированность социальных навыков обучающихся.
Общение:
• воспринимать и формулировать суждения в соответствии с условиями и целями общения; ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
• в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; в корректной форме формулировать разногласия, свои возражения;
• представлять результаты решения задачи, эксперимента, исследования, проекта; самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.
Сотрудничество:
• понимать и использовать преимущества командной и индивидуальной работы при решении учебных математических задач;
• принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать мнения нескольких людей;
• участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и др.);
• выполнять свою часть работы и координировать свои действия с другими членами команды;
• оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.
3) Универсальные регулятивные действия обеспечивают формирование смысловых установок и жизненных навыков личности.
Самоорганизация:
самостоятельно составлять план, алгоритм решения задачи (или его часть, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.
Самоконтроль:
• владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
• предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, найденных ошибок, выявленных трудностей;
• оценивать соответствие результата деятельности поставленной цели и условиям, объяснять причины достижения или недостижения цели, находить ошибку, давать оценку приобретённому опыту.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Освоение учебного курса «Алгебра» на уровне основного общего образования должно обеспечивать достижение следующих предметных образовательных результатов: